

Progression in Methods of Calculation

The National Curriculum emphasises the importance of all pupils' mastery of the content taught each year and discourages the acceleration of pupils into content from subsequent years.

In line with the new curriculum objectives, we will be teaching our children to:

- Become fluent in the fundamentals of mathematics, with increasingly complex problems over time so pupils develop conceptual understanding.
- Reason mathematically by following a line of enquiry, focusing on explanations and justifications of how they know an answer.
- Solve problems by applying mathematics to a variety of problems.

WHAT IS ‘SINGAPORE' MATHS?

Singapore maths is just maths! It is a style of maths teaching that is proven to develop a deeper conceptual understanding of mathematical concepts, giving children opportunities to use and apply their knowledge. It is child led, with a focus on questioning and discussion where children explore and investigate key mathematical concepts through problem solving.

CONCRETE - PICTORIAL - ABSTRACT (CPA APPROACH)

We follow a Concrete, Pictorial, Abstract approach throughout the school. Children will begin learning through the use of concrete materials (Base Ten, counters, multilink, tens frames) before progressing onto a pictorial representation of the resources. Children will move onto the abstract approach only when they are secure in their understanding.

CONCRETE RESOURCES

Children will have the opportunity to access a range of concrete manipulatives in every lesson to help secure their understanding.

There are a range of resources such as:

- Number fans
- Numicon
- Place Value cards
- Counters
- Square Tiles
- Digit cards
- Place Value Counters
- A range of dice

- Place Value sliders
- Unifix cubes
- Bead strings
- Base Ten
- Place Value Mats
- Hundred Squares
- Multiplication Grids
- Fraction Walls
- Tens Frames
- Everyday counting tools e.g. dinosaurs, fish etc.

To ensure consistency across the whole school, it is important we are all using the correct mathematical terminology.

Use of correct mathematical terminology is critical to teaching mathematical vocabulary. Placing math terms on a math word wall and using them daily makes ongoing review easy and fun.

The best way to learn a language - any language- is to be fully immersed in it. And so it should be in the math classroom because math is a language. Every math classroom should be rich with language, and the use of the correct terms must not just be encouraged. It must be expected.

In order for children to learn to speak maths, teachers must model the language regularly and correctly.

NUMBER BONDS

Children must have a secure understanding of number bonds as this will help them when approaching addition and subtraction problems.

This way children learn the various parts that make the whole.

They recognise that these are interchangeable yet give the same whole.

This then prepares them for the acquisition of addition/subtraction facts which in turn leads to formal algorithm and mental strategies.

They will need to explore number patterns and relationships using concrete resources such as those contained in the classroom toolkits.

Once children have explored making different totals they begin to forge relationships between bonds to 10 . They use a number of concrete tools to support this process.

Ten Frames/Egg boxes feature heavily and represent the base 10. Children explore and learn the number of different ways to make 10 using the egg box, base 10 frame. In EYFS, children learn and explore the different ways of making ten through the use of ten frames and rhymes.

The bar model is a step by step method that helps children to understand and extract the information within a calculation or word problem. By drawing a bar model, children translate a calculation or word problem into a picture. The approach helps children process the information given in the problem, visualise the structure, make connections and solve the problem.

In Year 1 children have been prepared for the introduction of the bar model by using concrete apparatus; for example, using interlocking cubes to compare the number of objects in two groups.

In Year 2 children explore addition and subtraction initially with concrete apparatus before moving on to using a pictorial representation - the bar model.

Adding sets of objects

I Omar bakes 10 biscuits.
Ruby bakes 12 biscuits.
How many biscuits do they bake altogether?

$10+12=22$
They bake 22 biscuits altogether.

Comparing two sets

I Mrs Williams has 213 chickens on her farm. Mr Evans has 78 more chickens on his farm. How many chickens does Mr Evans have on his farm?

$213+78=291$
Mr Evans has 291 chickens on his farm.

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model(number bond diagram/ partitioning diagram)	Use cubes to add two numbers together as a group or in a bar.		
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to
make 10.
Adding three
single digits

Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$
Column methodregrouping	Make both numbers on a place value grid. Add up the ones and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & 60+13=73 \end{aligned}$

	This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.	used here.	
	As children move on to decimals, money and decimal place value counters can be used to support learning.		

SUBTRACTION

| Objective and
 Strategies | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Taking away
 ones | Use physical objects, counters, cubes
 etc to show how objects can be taken
 away. | Cross out drawn objects to show what has been taken
 away. | $18-3=15$ |
| | | | $8-2=6$ |

Counting back | Make the larger number in your |
| :--- |
| subtraction. Move the beads along your |
| bead string as you count backwards in |
| ones. |

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part?	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.
	$10-6=$		

Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9.	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?

Column method without regrouping	 Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again, make the larger number first.	 Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.
\square

MULTIPLICATION

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities to show how to double a number. \& \begin{tabular}{l}
Draw pictures to show how to double a number.

Double 4 is 8

\square
\square
\square

\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline
\end{tabular}

Counting in multiples	Count in multiples supported by concrete objects in equal groups．	Use a number line or pictures to continue support in counting in multiples．	Count in multiples of a number aloud． Write sequences with multiples of numbers． $2,4,6,8,10$ $5,10,15,20,25,30$

Repeated addition	Use different objects to add equal groups．	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures．

Grid Method

Show the link with arrays to first introduce the grid method.

4 rows of 104 rows of
3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

4×126

Fill each row with 126.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$\mathbf{2 1 0}+\mathbf{3 5}=\mathbf{2 4 5}$

Moving forward, multiply by a 2 -digit number showing the different rows within the grid method.

Add up each column, starting with the ones making any exchanges needed.

Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. $\begin{aligned} 32 & \\ \times 24 & \\ \cline { 1 - 1 } 8 & (4 \times 2) \\ 120 & (4 \times 30) \\ 40 & (20 \times 2) \\ \frac{600}{768} & (20 \times 30) \end{aligned}$ This moves to the more compact method.

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes; can you share them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

g			Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context Write out the first ten multiples of the number you are dividing by: $\begin{aligned} & 564 \div 13 \\ & 13 \begin{array}{rrrrr} 5 & 6 & 4 & . & 0 \end{array} \\ & 0 \end{aligned} \ldots$ $=43 \text { r } 5=43 \frac{5}{13}=43.4 \text { (to } 1 \mathrm{dp} \text {) }$

